
1 
 

An evaluation of meteorological data prediction over Washington, D.C.: 

Comparison of DCNet observations and NAM model outputs 

Nebila Lichiheb*1, Bruce Hicks2, LaToya Myles1 

1National Oceanic and Atmospheric Administration (NOAA), Air Resources Laboratory, Oak Ridge, TN 

37831-2456, USA. 
2MetCorps, PO Box 1510, Norris, TN 37828, USA. 
Corresponding author*: Nebila Lichiheb  

Email: nebila.lichiheb@noaa.gov 

 

Abstract 

This study presents an example of how outputs of operational and readily-available mesoscale 

numerical models can be adapted to initialize dispersion calculations within the urban surface 

roughness layer. Three years of urban meteorological observations from central Washington, DC, 

are compared against forecast outputs of the North American Mesoscale (NAM) model. NAM wind 

speed predictions underestimate the observations in light winds and overestimate the measurements 

in high winds. Average wind directions are consistent. However, an adjustment of the predicted 

direction of the plume by -20° is needed. The uncertainty associated with this adjustment is large 

in light NAM wind speed with no evident variation by season. The values of the  standard deviation 

of the wind direction, σθ derived from NAM model outputs underestimate the observations by a 

small amount (about -1.5 to -2.5 degrees).  The results presented here indicate that mesoscale 

numerical model outputs can provide information adequate for dispersion calculations. However, 

levels of uncertainty associated with implementation of the suggested procedures increase with 

decreasing wind speed, causing considerable uncertainty in the implementation of adjustments as 

low wind speed conditions are approached. Results and recommendations reported here should not 

be extended to other numerical models or other cities without further testing. 
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1. Introduction 

Currently, more than 50% of the world’s population lives in urban areas. That percentage is 

expected to grow to about 70% by 2050 (United Nations, 2019). The United States is one of the 

most urbanized regions in the world with 80% of the population living in urban areas (Leeson, 

2018). This trend in urbanization has led to a significant impact on local weather and atmospheric 

structure in various ways. The most thoroughly investigated aspect of urban climate modification 

is the urban heat island (Oke, 1987; Arnfield, 2003). The urban heat island refers to the atmospheric 

warmth of a city and its effects on its surroundings; it occurs in and extends downwind from all 

urban areas in warm or cold climates (Stewart and Oke, 2012). Other scientific studies have shown 

that urbanization can alter the hydrological system by creating an increase in regional precipitation 

variability and intensity (Yang et al., 2013; Hand and Shepherd, 2009; Shepherd, 2006). Air quality 

and urban pollution are other major issues related to the increase of the urban population. The 

considerable increase in industrialization and traffic have been associated with elevated hazardous 

material releases and greenhouse gas emissions (Kelly and Fussell, 2015; Pataki et al., 2007). 

Atmospheric dispersion and deposition of hazardous materials in urban areas are therefore 

increasingly under investigation due to the potential impact on human health and the environment.  

The expected growth of urban populations imposes an expanded need for more accurate prediction 

of urban meteorology, and especially of the risk following release of some hazardous material into 

the air.  Assessments of the adverse effects of pollutants in urban areas require detailed description 

of the atmospheric wind fields affecting them. Researchers usually prefer to rely on predictions 

made using the most advanced simulation available, often tuned to optimize the ability to relate to 

the specific area of interest. In practice, responders to an event involving a release of some 

hazardous material will have little opportunity to select the meteorological simulation most suited 

to the site-specific circumstances involved. Instead, reliance is typically on forecast models 

routinely vetted and familiar to the emergency response community, including several models from 

the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS). 

Within the United States, the products of these models are available for use as inputs to several 

operational dispersion models (Seaman, 2000).  

Due to the complexity of urban land surfaces, meteorological models for the urban environment are 

still under development, even in a research setting (Baklanov et al., 2018). One concept of further 
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model research and development is “skimming flow” which refers to the decoupling of the 

atmospheric flow within street canyons from the flow entering the urban environment above the 

rooftops, due to the presence of buildings, streets, vegetation, etc. (Britter and Hanna, 2003). 

Changes in surface roughness by street canyons and buildings cause an increase in turbulent mixing 

and a slowing of the local flow within the urban core (Roth, 2000; Kanda, 2007). Due to the 

complexity of the urban areas, operational weather prediction models may have large biases in 

urban environments. In general, NWS models have very limited information about the underlying 

urban environment because they do not include the urban topography to address the increased 

turbulence imposed by the different obstacles. Therefore, an additional surface roughness is applied 

to describe the slowing of the local flow as well as the increasing of the turbulent mixing level, 

known as the roughness approach (Martilli, 2002). This empirical adjustment only addresses the 

overall flow structure by assuming stationary conditions and spatial homogeneity. To address this 

issue, urban canopy parameterizations have been developed and implemented in fine grid spacing 

meteorological models (Otte et al., 2004), however this parameterization includes lots of 

uncertainties. Furthermore, such forecasting models are not based on observations within the urban 

core but on micrometeorological data typically gathered tens of kilometers away in less densely 

populated settings. Contributing micrometeorological stations are usually located at a major airport 

where conditions are considerably different from downtown (Hicks, 2005).  

To improve urban atmospheric dispersion simulations, an initial priority of this work is to provide 

more accurate wind field descriptions. Seldom are local wind observations available in urban areas, 

and if they exist, they are typically not ingested into routinely available numerical weather models. 

In this context, Haupt et al. (2019) highlighted the need to combine observations and NWS model 

simulations to provide a more accurate meteorological inputs to operational air pollution models. 

Local observations provide opportunities to test the relevance of model predictions and to quantify 

the relevant uncertainty. This uncertainty information is needed for both dispersion assessment and 

practical emergency response (Dabberdt et al., 2000).   

To address some of these uncertainties, a research program (DCNet ) was established in 2003 by 

the NOAA Air Resources Laboratory (ARL) to collect micrometeorological information at multiple 

sites across the Washington, DC, area, with the dual intent (a) to provide a basis for examining and 

refining the relevance of meteorological information provided by routine weather forecasting 
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sources, and (b) to provide on-site wind field data on which to base dispersion models for 

emergency application. Hicks et al., (2012) reviewed data obtained from DCNet and showed the 

utility of such data for evaluating the relevance of guidance from NWS models and improve the 

description of atmospheric dispersion in urban areas. The extended DCNet data record is unique 

and provides an opportunity to resolve some of the complexities of the urban environment.  

The main goals of this study are to demonstrate the differences arising when routine model outputs 

are compared with urban observations and to quantify the adjustments required when model outputs 

are used to represent the downtown business district of Washington, DC. The focus is on the 

comparison of wind observations from the DCNet station on the U.S. Department of Commerce 

Herbert C. Hoover Building (HCHB) and the North American Mesoscale (NAM) model outputs 

for the period 2017-2019. The NAM model has been chosen as an example of possible wind field 

guidance, unaffected by model adjustment to improve agreement with local conditions (as is a 

common issue arising when research-grade models are employed).   

The analysis presented here uses existing data from the DCNet research network (Hicks, 2005; 

Pendergrass et al., 2020) as a basis for examining the relevance of wind field predictions by a large-

scale synoptic simulation, such as the NAM model. In the first part of the analysis to follow, HCHB 

wind observations will be compared against NAM outputs using a seasonal regression analysis. In 

the second part, the average differences in wind speed and wind direction between NAM outputs 

and HCHB observations will be analyzed seasonally as a function of NAM wind speed and as a 

function of time of day. A third part will extend considerations to the quantification of the plume-

spreading estimates, the standard deviations of the wind direction σθ. Methods for adjusting outputs 

from the NAM model to improve agreement with DCNet observations will be proposed.  

2. Data selection and analysis  

In terms of making best use of existing data to improve dispersion model predictions for urban and 

city applications, the DCNet data provide a unique opportunity for real-time meteorological 

observations over the greater National Capital Region (NCR) to support development of numerical 

weather prediction models as well as provide the meteorological observations to initialize for 

atmospheric transport and diffusion models (Hicks et al., 2012). The NCR was selected as the focal 

area because of: (i) its known status as a target for terrorist attack, (ii) its history as a site for research 
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using atmospheric tracers (Draxler, 1987a, b; Draxler, 2006), and (iii) the unusually confined 

building dimensions (with building heights not exceeding about 27 m as required by the 

Washington Building Act of 1910). The data are therefore collected in an area with fairly uniform 

density and height of buildings. In conjunction with the relative simplicity of the terrain, 

Washington, D.C. is a testbed for such study, providing a case of skimming flow where the 

assumptions of horizontal homogeneity and stationarity are approximated more than in other cities 

(Hicks et al., 2014).  

The locations of DCNet measurements are spread across the District of Columbia and its 

surrounding suburbs.  Of these stations, the installation atop the U.S. Department of Commerce 

Herbert C. Hoover Building (HCHB) at 1401 Constitution Avenue, Northwest, Washington, DC 

(38.8940N, 77.0330W) has been the subject of most recent attention. The building height is 

approximately 25 m above street level and about 28 m above sea level. This location is within the 

Central Business District (CBD) of Washington, is within 1 km of the White House. This DCNet 

station served as the central point within the NCR and has been unaffected by data interruptions 

caused by resource limitations. The HCHB station was installed in 2003 with data archiving starting 

in 2004. All available data collected at HCHB for the period from 1 January 2017 to 12 December 

2019 have been used here after quality assurance (QA) and quality control (QC) and without 

imposing any data screening.  

Measurements were made using a 10-m meteorological tower above the HCHB rooftop (Figure 1). 

The tower is equipped with a three-dimensional sonic anemometer system, installed on the top and 

providing 10 m wind observations at a frequency of 10 Hz. Therefore, wind measurements are taken 

at about 35 m above street level. As for all DCNet installations, the tower is situated to minimize 

possible effects of roof edges and local obstructions. Averages, variances and covariances are 

computed by on-site data recording systems. All recorded data are transmitted every 15 minutes to 

a central archive, using cellular modems.  Once received, data are subjected to coordinate rotation 

and error checking analyses. More details on the description of instrumentation and data analysis 

associated with the HCHB are presented by Pendergrass et al. (2020). 
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 147 

Figure 1: DCNet tower at the HCHB station, showing a sonic anemometer at the top of the 

roof-mounted 10m tower. The meteorological tower also includes instruments to measure 

air temperature, relative humidity and net radiation at the same height as the sonic 

anemometer. 

An immediate question arises as to the representativeness of the HCHB dataset. To examine this, 

sonic anemometer data derived during 2008 have been analyzed for 7 DCNet stations within the 

NCR.  Figure 2 shows (in red) the stations considered, with the HCHB site being identified by the 

square symbol. The locations of other DCNet locations, not contributing to the present CBD focus, 

are also depicted.    
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Figure 2:  The DCNet locations (in red) used in an examination of the representativeness 

of individual stations, using 2008 data. The square identifies the Department of Commerce 

(HCHB) location. Yellow circles show DCNet locations excluded from the present analysis. 

Figure based on Google Earth. 

 

Figure 3a shows the variation of wind speed with time derived for each of the red locations in Figure 

2. Figure 3b shows the corresponding sequence for the standard deviation of wind direction. To 

illustrate the data variability, changes in the coefficient of variation (CV) are also plotted. (CV is 

the absolute value of the ratio of the standard deviation to the mean.) The comparison of the wind 

speed and standard deviation of wind direction data demonstrates the representativeness of the 

HCHB site measurements. The uniformity of the observations indicates rare departures from a 

coherent flow regime across the entire central DC area. Moreover, the low CV values in Figures 3a 

and 3b confirm that wind measurement from any DCNet location within the CBD can be considered 

to be representative of the area except for rare occasions when the CV approaches unity.  
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175 

Figure 3: DCNet wind observations at 10 m height above rooftops from 7 stations (presented 

with 7 different colors) within the Washington, D.C. downtown area: (a) wind speed (u) and 

the changes in the Coefficient of Variation for wind speed (CV(u)), and (b) standard deviation 

of wind direction (σθ) and the changes in the Coefficient of Variation for wind direction (CV 

(σθ)). Coefficients of variation (CV) are plotted with black curves (CV(x) ≡ σ(x)/𝑥𝑥). 

he present study focuses on the relationship between velocity observations at the DOC (HCHB) 

CNet location and routinely-provided predictions by the 12-km NAM model of NCEP.  Following 

he same procedures that produced the measurements plotted in Figure 3, this analysis will make 

se of coordinate rotation to align with the mean wind direction and so that the average vertical 

ind speed 𝑤𝑤�  is zero (McMillen, 1988). The coordinate rotation yields an average wind speed 

𝑢𝑢�HCHB”. Average wind directions “𝜃𝜃HCHB” are derived from the average �𝑈𝑈 and 𝑉𝑉�  Cartesian velocity 

ectors reported by the sonic anemometry. 
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Predictions to be used in the comparisons to follow have been derived from the velocity simulations 

of the 12 km parent domain of the North American Mesoscale model (12 km NAM) (Black, 1994). 

The 12 km NAM is one of the forecast systems of the National Center for Environmental 

Predictions (NCEP).  For a summary of these capabilities, see  https://mag.ncep.noaa.gov/model-

guidance-model-area.php. The NAM model provides predictions four times each day, at 0000, 

0600, 1200, and 1800 UTC; it is initialized using a 6-h data assimilation cycle with hourly analysis 

updates using the NCEP hybrid variational ensemble analysis (q.v. NCAR, 2021). The NAM 12 

https://mag.ncep.noaa.gov/model-guidance-model-area.php
https://mag.ncep.noaa.gov/model-guidance-model-area.php
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model has been chosen in this study as an example. We assume that the HCHB rooftop represents 

the model surface. NAM provides geographic wind vectors at 10 m above the relevant zero-plane 

displacement, which are then assumed to be comparable to the 10 m wind observations above the 

rooftop at the HCHB site. NAM outputs have been used in this study without any adjustments of 

the land-surface characteristics. The 12 km grid size is considered to be optimal for this study 

because it is of similar scale to the study area; a smaller grid size would impose the need to account 

for topographic effects such as are known to be due to the Potomac River valley but are not 

appropriately detected by the DCNet array. 

NAM provides quantifications of the wind vectors  �𝑈𝑈 and 𝑉𝑉�  hourly. From these hourly values, wind 

speed “𝑢𝑢�NAM” and wind direction “𝜃𝜃NAM” were derived. NAM wind outputs relate to the final 15 

min preceding every hour.  These hourly “snapshot” wind estimates provided by NAM have then 

been compared to the last 15 min interval of the hour of data collection at the HCHB site. 

3. Comparison of HCHB observations with NAM outputs  

The comparison between wind speed and wind direction measurements from HCHB against the 

predictions of NAM has been focused on the error involved if modelers rely on NAM predictions 

alone. To this end, the differences in wind speed and wind directions, NAM – HCHB have been 

emphasized. Regarding wind direction, special attention has been directed to the issues arising when 

one of the measurements indicated east of north and the other west of north.  The intent is to arrange 

for the most robust statistical examination possible, and hence the north-crossing issue has received 

considerable attention.  In particular, when the difference 𝜃𝜃NAM - 𝜃𝜃HCHB in wind direction is more 

than 180°, 360° has been subtracted from it.  In this way the range of wind direction departures is 

limited to -180° < 𝜃𝜃NAM - 𝜃𝜃HCHB < 180°. 

Since the Washington D.C. area is well forested, differences in wind speed and wind direction 

between NAM and HCHB have been analyzed seasonally for the period from 1 January 2017 to 12 

September 2019. The intent is to test whether the vegetative cover affects the dispersion input 

variables. 

As a first step, HCHB velocity (speed and direction) measurements have been regressed against the 

NAM model outputs for each season, yielding the following relationships: 
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𝑢𝑢�NAM = a 𝑢𝑢�HCHB + b (1) 

 𝜃𝜃NAM = a 𝜃𝜃HCHB + b              (2) 

where a and b are the linear regression best fits for each variable and each season. 

Table 1 summarizes the seasonal regression results. Seasons are defined in this study as January–

March (winter), April–June (Spring), July–September (Summer), and October–December 

(Autumn). For wind speed, a and b values are consistent over the three years. However, the values 

of b are consistently less than unity, indicating the expected reduction of the wind speed (observed) 

from that predicted by the forecasting model.  There is also a consistent offset involved, such that 

the regression line is displaced by about 0.5 m s-1, with the observed wind speed always being lower 

than predicted. The relatively smaller correlation values between HCHB wind speed observations 

In the case of wind direction, the values of R2 are higher than in the case of the wind speed. The 

roughness of the urban area affects the wind speed more than the wind direction.  The values listed 

indicate that there is little reason to dispute the NAM wind direction predictions. The slopes of the 

regression lines (a) are all close to unity and their offsets (b) vary significantly although indicating 

consistent average offsets in the winters and autumns. P-values are also calculated for the seasonal 

regression of wind speed and wind direction for the years 2017–2019 (Table 1). The results show 

very small p-values (p < 0.01), indicating statistically significant linear regressions. Table 1 shows 
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and NAM simulations during the summer season may also be related to the consequences of greater 

summertime convection. This result is consistent with the findings of Pan et al., (2021) who 

investigated the seasonal variation of wind speed forecast errors of the WRF model over China and 

demonstrated that due to more active local convection during summer time, the urban velocity 

regime is difficult to simulate using Numerical Weather Prediction (NWP) models. 

that the agreement between NAM and DCNet observations is most robust in the winter and least 

robust in the summer, with the other seasons being between these extremes. One interpretation of 

these observations is that thermal mechanisms (as in summer and winter, when building heat 

controls are major contributors to local heat balances, q.v. Hicks et al., 2010) are significant 

contributors. However, the present data are not adequate to reveal whether an explanation lies in 

the urban heat island effect or to the synoptic meteorological patterns which may change the 
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surface-energy budget and the thermal structure (Britter and Hanna, 2003). Furthermore, our results 

Table 1: Summary of the seasonal regression analysis results for wind speed and wind direction 

for the years 2017–2019. R2 is the coefficient of determination, a is the slope and b is the offset, 

assuming a linear dependence of the kind 𝑢𝑢�NAM = a 𝑢𝑢�HCHB + b and 𝜃𝜃NAM = a 𝜃𝜃HCHB + b, with 

𝑢𝑢�NAM, 𝑢𝑢�HCHB,  𝜃𝜃NAM, and 𝜃𝜃HCHB refer to NAM wind speed,  HCHB wind speed, NAM wind 

direction, and HCHB wind direction respectively. P-value is the level of significance of the 

linear dependence. 
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253 

R2 
Wind speed (m/s) Wind direction (deg) 

a b p-value R2 a b p-value
Winter 0.67 0.92 0.34 9.86 E-03 0.85 1.00 -20.45 2.27 E-107 

2017 Spring 0.62 0.90 0.70 9.96 E-66 0.82 0.92 0.30 4.20 E-62 
Summer 0.49 0.78 0.73 5.82 E-20 0.80 0.92 -4.34 2.61 E-71 
Autumn 0.69 0.99 0.43 4.07 E-42 0.87 1.00 -18.07 7.15 E-51 

Winter 0.64 0.93 0.55 5.41 E-24 0.92 1.02 -20.68 6.43 E-103 

2018 Spring 0.56 0.83 0.76 3.92 E-26 0.77 0.91 -1.19 6.35 E-58 
Summer 0.49 0.80 0.75 5.27 E-31 0.80 0.92 -10.73 4.20 E-111 
Autumn 0.64 0.91 0.53 1.11 E-27 0.87 0.99 -14.79 4.99 E-85 

Winter 0.68 0.99 0.22 1.11 E-13 0.90 1.01 -19.80 5.67 E-93 
2019 Spring 0.61 0.92 0.74 9.66 E-91 0.83 0.93 -2.51 1.59 E-68 

Summer 0.41 0.68 0.98 2.12 E-16 0.72 0.89 1.78 3.88 E-52 

Figure 4 shows an example for the spring season of 2017, showing the scatter affecting an over-

riding linear relationship.   

261 

262 

do not show a significant impact of the vegetation cover on wind observations. 



12 

263 

Figure 4: Linear regressions of  𝑢𝑢�NAM against 𝑢𝑢�HCHB (a) and 𝜃𝜃NAM against 𝜃𝜃HCHB (b) for the spring ̅ ̅264 
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season of 2017. 

   4. Deriving wind adjustments

In examining differences between predictions of a selected routine weather forecast model and on-

site observations, the focus of the considerations to follow is on the basic requirements for 

emergency-response dispersion modeling: the average wind speed and direction (𝑢𝑢� and 𝜃𝜃 

respectively) and the familiar dispersion spread quantity σθ. (As is common in meteorology, 

overbars are used to represent time averages).  In all three cases, the analysis will address both the 

magnitudes of the differences between predictions and observations and the uncertainties associated 

with these differences. To avoid confusion arising from consideration of standard deviations among 

sets of measurements of 𝜃𝜃 when the dispersion variable σθ is a more familiar quantity, the 

uncertainty associated with differences (predictions minus observed) of all average quantities will 

be identified using the symbol ξ, so that ξ(𝑢𝑢�) is the root mean square departure of the differences 

between predictions of 𝑢𝑢� and observations. 

̅

̅

Inspection of the data on which the regressions of Table 1 were based shows that the wind direction 

correspondence, HCHB to NAM, decreased rapidly as wind speed dropped, such that the values of 

b and hence of ξ(𝜃𝜃) are greatly affected by the large differences encountered when conditions are 

near calm. To address this issue, more detailed analyses of the available data have proved useful, 

as will follow. 

̅
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4.1. Wind speed 

In order to quantify the NAM wind speed error, the difference in velocity between NAM outputs 

and HCHB observations has been scrutinized more thoroughly. Available data within each season 

were ordered by 𝑢𝑢�NAM and grouped into sequential hundred data points. For each sequence, 

averages of the differences δ𝑢𝑢� = (𝑢𝑢�NAM – 𝑢𝑢�HCHB) were obtained, together with quantification of the 

standard deviation of the departure of average wind speeds ξ(δ𝑢𝑢�). Very small p-values (p ~ 0) were 

obtained for the different regressions presented in Figure 5, indicating statistically significant linear 

regressions. Results are shown in Figure 5, where it is seen that for NAM derived wind speeds 

between 2 and 5 m s-1, NAM and HCHB generally agree quite well. However, NAM significantly 

underestimates the observations at low wind speeds (< 2 m s-1) and significantly overestimates the 

measurements at high wind speeds ( > 5 m s-1). As illustrated by the linear regression lines, there is 

no significant difference between the seasons and the results are similar for the years 2017, 2018 

and 2019. Based on the average linear regression, the HCHB wind speeds should be estimated from 

the NAM model outputs as follows: 

                                                 𝑢𝑢� (adjusted) = 0.66 𝑢𝑢�NAM + 0.81              (3) 

This result is consistent with other studies that have shown that for urban and city applications NWP 

models do not perform well for very low and high wind conditions (Ngan et al., 2015; Pan et al., 

2021; Samalot et al., 2019). The wind biases depend on the magnitude of wind speed for all seasons. 
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   303 

Figure 5: Regression analyses of the difference in average wind speed between NAM outputs 

and HCHB observations against NAM wind speed for the years 2017–2019. Red squares, green 

diamonds, and blue circles indicate the years 2017, 2018 and 2019, respectively. P-values of 

the different regressions for the years 2017, 2018 and 2019 are almost equal to zero (p ~ 0). For 

presentation clarity, every hundredth data point is displayed. 

The data available here gives the error margin that a modeler needs to consider by implementing 

the proposed adjustment in equation 3. Figure 6 shows results derived when the uncertainties of the 

differences between NAM output wind speeds and HCHB observations (ξ(δ𝑢𝑢�)) are plotted against 

NAM wind speed. Very small p-values (p ~ 0) were also obtained here (Figure 6), indicating 

statistically significant correlations. The plots of Figure 6 reveal similarity among the results from 

the different seasons and different years. The average of the results shown in Figure 6 permit a 

direct quantification of the uncertainties associated with such an adjustment.  

                                                ξ (𝑢𝑢� (adjusted)) = 0.07 𝑢𝑢�NAM + 0.63                      (4)  
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Figure 6: Analyses of the standard deviations of the difference in wind speed between NAM 

outputs and HCHB observations against NAM wind speed for the years 2017–2019. Red 

squares, green diamonds, and blue circles indicate the years 2017, 2018 and 2019, respectively. 

P-values of the different regressions for the years 2017, 2018 and 2019 are almost equal to zero 

(p ~ 0).  For presentation clarity, every hundredth data point is displayed. 

In practical application of the wind speed results reported here, it is anticipated that a modeler will 

(a) compute the wind speed (𝑢𝑢�NAM) from the vector outputs ( �𝑈𝑈 and 𝑉𝑉�) of the forecast model (NAM 

in the present case), (b) use Eq. 3 to estimate the wind speed appropriate for the NCR, and then use 

Eq. 4 to  compute the uncertainty associated with the revised wind speed quantification.  Basing 

this last step on Eq. 4 results in an identification of the root mean square error in the adjustment 

(the relevant standard deviation), which is now shown to be a slowly changing function of the wind 

speed.  Thus, the relevant average wind speed is derived, along with the uncertainty associated with 

it. 

4.2. Wind Direction 

The summary of wind direction correspondence between NAM products and HCHB observations 

presented in Table 1 indicates substantial variability in the results of a simple linear regression 
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approach. The matter requires additional attention, as in Figure 7. The uppermost panels of Figure 

7 show how the difference in average wind direction between NAM outputs and HCHB 

observations varies as a function of NAM wind speed.  The lower panels show the variation of the 

same differences with time of day. Error bars correspond to ± one standard deviation. These 

examples are for the summer 2017, spring 2018 and winter 2019. The illustrations indicate that 

there is a consistent difference between average NAM predictions of wind direction and 15 min 

average HCHB observations, regardless of whether changes are quantified according to 𝑢𝑢�NAM or 

time of day. The consistent difference appears to be about - 20 deg (one standard deviation).  

However, the uncertainty associated with this difference decreases with increasing 𝑢𝑢�NAM, but not 

according to the time of day.   
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 344 

Figure 7: In the uppermost panels, results derived from the average differences in wind direction 

between NAM outputs and HCHB observations against NAM wind speed during the summer 2017 

(a), spring 2018 (b) and winter 2019 (c). In the lower three panels, the same differences expressed 

as a function of time of day. Error bars represent ± one standard deviation. 

 

Following the procedure used above to examine the extrapolation of wind speed from NAM 

predictions, the uncertainties of the differences in wind direction between NAM average velocity 

outputs and HCHB observations (ξ(δ𝜃𝜃)) is plotted as a function of NAM wind speed in Figure 8. 

The result reveals a strong dependence of the wind direction departure on NAM wind speed for the 
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entire study period with no detectable variation by season. Note that the error appears to asymptote 

about 15 deg as wind speed increases, this quantifying the accuracy that cannot be improved.  

Inspection of the data reveals that the dependence is according to the inverse of the wind speed. 

Accordingly, the ordinate values corresponding to the plot of Figure 8 have been regressed against 

1/𝑢𝑢�NAM, and the resulting best fit using the following equation generates the red curve plotted in the 

diagram.  In all cases, the R2 associated value with the plot is 0.88.  

                                                     ξ(𝜃𝜃(adjusted)) = (45.5/𝑢𝑢�𝑁𝑁𝑁𝑁𝑁𝑁) + 10.9                                                         (5) 
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 362 

Figure 8: Results of analysis of the uncertainty associated with the difference in wind direction 

between NAM outputs and HCHB observations against NAM wind speed for the years 2017–

2019. The red curve is the result of linear regressions against 1/𝑢𝑢�NAM. For presentation clarity, 

every hundredth data point is displayed.   

5. Quantifying the Plume Spread Index, σθ 

The discussion so far has focused on the derivation of the average speed of movement (𝑢𝑢�) of a 

dispersing quantity and the average direction of its movement (𝜃𝜃). As required by dispersion 

computations, estimates of the standard deviation of wind direction fluctuations (σθ) must also be 

derived from the NWP model outputs to describe the direction of the dispersion plume. NWP 

models, like NAM, are constructed using a Cartesian framework, with velocity presented in terms 

of two vector components, from the north (𝑉𝑉�) and from the west (𝑈𝑈�) as already discussed. The 
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Lagrangian quantities 𝑢𝑢� and 𝜃𝜃 are readily derived from the Cartesian outputs of NAM (as has been 

done above), but there is no listing provided of the standard deviations associated with the Cartesian 

components 𝑈𝑈� and 𝑉𝑉� . Dispersion modelers therefore try to derive a best estimate of the plume-

relevant Lagrangian quantity σθ based on the considered NWP model by interpreting the model 

outputs. In this section, we are using the HCHB wind observations we are proposing an adjustment 

of the estimated σθ and a quantification of the uncertainty associated with the derivation of σθ based 

on NAM outputs. 

In particular, routine NAM model outputs include quantifications of the turbulent kinetic energy 

(TKE, in units of m2 s-2), quantified as 

                                     TKE = (σ 2
u  + σ 2  +  σ 2

v w )/2                                                                           (6) 

The contribution of σ 2
w  is small, amounting to about 7% of the total TKE in slightly unstable 

conditions (based on the quantifications of the ratios σu/u* = σv/u* = 3.5, and σw/u* = 1.3, as often 

quoted — e.g. Garratt. 1992).  When transferred to Lagrangian coordinates, this TKE will be 

approximately equally apportioned between longitudinal and lateral components, so that in the 

Lagrangian framework 

                                    σ 0.5
u = σv = 0.5 (0.93∙TKENAM)                                                                      (7) 

Since the association of θ with the mean wind speed 𝑢𝑢� and the cross-wind quantity σv is simply 

geometric, it follows that as a first order approximation 

  σθ = (180/π)∙atan (σv / 𝑢𝑢�)                                                     (8)    

where σθ is now expressed in degrees. 
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 395 

Figure 9: Comparison of the standard deviation of HCHB wind direction (σθHCHB) and NAM wind 

direction (σθNAM) and as a function of NAM wind speed (𝑢𝑢�NAM) and as a function of time of day for 

the four seasons of the year 2018: (a) and (b) the difference between σθHCHB and σθNAM as a function 

NAM wind speed and time of day, respectively. (c) and (d) the standard deviation of the difference 

between σθHCHB and σθNAM as a function NAM wind speed and time of day, respectively. 

Figure 9 compares values of σθNAM and σθHCHB, for the four seasons of 2018. Following the 

procedures used above, in the context of the average direction of a plume, Figure 9 plots the 

differences between σθNAM and σθHCHB and as functions of 𝑢𝑢�NAM (in Figure 9a) and time of day 

(Figure 9b). The lines drawn connect averages (of hundred data points) constructed over sequential 

groups of observations, after ordering by the abscissa. In Figure 9a there are indications of an 

increase in the difference between σ -1
θNAM and σθHCHB as wind speed drops below 2 m s .  This result 

highlights the fact that the statistical uncertainty related to the differences between σθNAM and 

σθHCHB gets higher when NAM wind speed is lower than 2 m s-1. In Figure 9b a slight variation with 

time of day is evident, but always less than the level of uncertainty indicated in Figure 8d. The 

averages plotted indicate that a best estimate of σθ would be derived from σθNAM by the simple 

expedient of subtracting about 1.5 to 2.5 deg.  
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The most striking panel of Figure 9 is that which shows how the uncertainty with which σθ is 

computed from NAM outputs varies with wind speed (Figure 9c). As in the case of Figure 8 the 

data now presented suggest a simple depiction of the uncertainty associated with the derivation of 

σθ such that the level of uncertainty drops according to the reciprocal of the wind speed according 

to the following equation: 

 ξ (σθ (adjusted)) = (10.6/𝑢𝑢�𝑁𝑁𝑁𝑁𝑁𝑁) + 2.1                                                      (9) 

in units of degrees.   

 

6. Conclusions  

Given that urban-area emergency responders require access to dispersion capabilities for the area 

of their interest and that on-site observations of the quantities required to initialize such models are 

usually not available, methods for extracting relevant information from other sources are required.  

The 12–km scale NAM weather forecasting model, has been used to test the adequacy of its 

products in the urban dispersion setting. Consideration here has focused on the three input variables 

common in dispersion calculations: wind speed, wind direction and the standard deviation of the 

wind direction. Given the complexity flow structure of the urban environment and the scarcity of 

local wind observations in urban areas, this research provides methods for adjusting NWS model 

wind outputs based on on-site observations. Adjustments of this kind are necessary to make use of 

routinely-available weather forecasting predictions to initialize dispersion models over urban areas 

on which critical decisions for emergency response are based. 

Observations of these variables at a centrally-located site in Washington, DC have been used to 

assess the relevance of NAM outputs and to derive adjustments to them in order to improve their 

use to initialize dispersion models. In the case of wind speed, the comparisons show that central 

Washington generally experiences a lower wind speed than NAM predicts, much as expected 

because the surface roughness of the urban area is greater than that of its surrounding region. There 

is no consistent variability according to season. The proposed mean adjustment associated with 

using NAM wind speed predictions tends to be highest in light and high wind conditions (wind 

speed < 2 m s-1, and wind speed > 5 m s-1), which agrees with other studies showing that 
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meteorological models provide better forecasts for medium range wind conditions (Ngan et al., 

2015; Pan et al., 2021; Samalot et al., 2019). The available data analyzed in this study allowed the 

quantification of the uncertainties associated with such an adjustment that needs to be considered 

by the modelers. 

The wind direction comparison results in a high correlation between NAM predictions and HCHB 

observations with no consistent dependence on time of day. The results derived when the average 

difference in wind direction between NAM outputs and HCHB observations are plotted against the 

NAM wind speed recommended the adjustment of the predicted direction of the plume by -20°. 

Furthermore, the uncertainty associated with acceptance of this adjustment is large in light winds, 

decreasing as wind speed increases with no evident variation from season to season. In near-calm 

conditions, the uncertainty of the adjustment associated with accepting NAM predictions can 

exceed 60º.  

As expected, values of σθ derived from NAM outputs underestimate HCHB observations by a few 

degrees, with no significant trend with either wind speed or time of day. However, the uncertainty 

associated with imposition of this adjustment changes consistently with wind speed, maximizing in 

light winds. 

The quantified wind forecast errors of NAM model and NWP models in general are related not only 

to the fact that these models do not include the urban topography, but also to the fact that they are 

not based on observations within the urban core. Due to the high uncertainty associated with 

implementing an urban canopy parameterization into fine grid resolution (< 3km) NWP models to 

explicitly simulate the flows around the surface obstacles of the urban environment (Otte et al., 

2004), there is a need to learn how to make best use of the existing local observations to adjust the 

numerical predictions. The methodology used in reaching these conclusions relies on the 

availability of a source of representative observations, such as are provided here by a selected 

station of the DCNet research network. Comparisons of observations from several DCNet stations 

within the central business district of Washington show that the selected dataset is indeed 

representative. These results may be taken as an indicative of the circumstances of Washington, 

D.C., intentionally selected as a research location because of the relative simplicity of the 

surroundings. Washington, D.C. is on comparatively flat land with a spatial homogeneity that is 
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unusual for a major city. For instance, New York city is certainly different with exceedingly tall 

buildings and considerable spatial heterogeneity. It was demonstrated that details of building and 

street orientation can be controlling factors in the movement of pollutants since the air near the 

surface is affected by the surface obstacles (Grimmond and Oke, 1999). Hicks et al. (2013) analyzed 

wind observations from six US urban areas in Boston, New York, Philadelphia, Washington, 

Chicago and New Orleans. They demonstrated that wind speed and velocity component 

relationships are significantly influenced by local surface inhomogeneities, which require city-

dependent consideration. 

This study highlights the importance of combining local observations and numerical simulations to 

resolve the complexity of urban land surfaces. While the present results are encouraging, they 

confirm expectations and permit quantification of methods for adjustment. However, the extension 

of these results to other situations would require additional attention.   
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The operational 12 km NAM forecasts for the period 2017-2019 used in this project can be found 

on the NCEP ftp server (ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/nam/prod/nam.20211107/ ) 

or on the National Center for Atmospheric Research (NCAR) website 

(https://rda.ucar.edu/datasets/ds609.0/#!docs ).   
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